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Abstract

Atoms diffuse in a molten metal alloy under the influence of a tempera-
ture gradient at high pressure and temperature. They change phase and
form synthetic crystals. An equation modelling the diffusion phenomenon
is presented, relating the concentration of diffusing atoms to the tem-
perature gradient and the crystal formation rate. Models for the crystal
growth are also presented. The governing equation is first interpreted
at microscopic level. Analytical and numerical solutions are then in-
vestigated. As observed experimentally, the sign and magnitude of the
temperature gradient in the alloy affects the potential crystal formation
and the rate of crystal growth. The value of the key physical parameters
involved is discussed and model improvements are suggested.

∗Mathematics Applications Consortium for Science and Industry, Department of Math-
ematics and Statistics, University of Limerick, Limerick, Ireland. jean.charpin@ul.ie

†School of Mathematical Sciences, University of KwaZulu-Natal, Private Bag X01, 3209
Pietermaritzburg, South Africa. bandamk@ukzn.ac.za

‡Department of Applied Mathematics, University of Johannesburg, APK Campus, PO
Box 524, Auckland Park 2006, South Africa. asjoberg@uj.ac.za

§School of Physics, University of the Witwatersrand, Private Bag X3, P O Wits 2050,
Johannesburg, South Africa - C.S.I.R. National Centre for Nano-Structured Materials, P.O.
Box 395, Pretoria 0001, South Africa - Department of Physics, The Polytechnic, University
of Malawi, Private Bag 303, Blantyre 0003, Malawi. bonex mwakikunga@yahoo.com

¶I. C. Consultants, P.O. Box 51190, Raedene 2124, Gauteng, South Africa. scr-
dochansen@gmail.com

21
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1 Introduction

Crystals of high perfection are required in applications such as X-ray optical
systems and synchrotrons of high brilliance like the ESRF (European Syn-
chrotron Radiation Facility). To meet these criteria, crystals are grown using
atom transport in an alloy of several metals. The atom/metal mixture is
placed in a high pressure device and the crystal growth occurs when a tem-
perature gradient is applied [25, 24, 26]. As a first approximation, at the start
of the crystal growth, a uniform atom concentration is assumed throughout
the sample. No further atoms are introduced and only the movements of the
atoms present initially in the mixture will be considered. Practically, a uniform
thermal gradient is applied with the maximum temperature at the top of the
solvent volume [5]. Migration of atoms towards the colder end, in the direction
opposite to buoyancy forces, is observed. This feeds the crystal growth that
occurs at the bottom of the alloy. The objective of the present work is to model
the movements of the atoms in the alloy solvent leading to the crystal growth
and interpret observations made during experimental work by our industrial
partner.

The movement of diffusing atoms is governed by two simultaneous phe-
nomena, thermal diffusion and Fick’s diffusion. Thermal diffusion, also known
as thermomigration or the Soret/Ludwig-Soret effect, describes the movement
of atoms under a temperature gradient. The phenomenon was first discovered
by Ludwig in 1856 and further investigated by Soret some twenty years later.
This type of diffusion is triggered by a temperature gradient. Depending on
the composition of the metal alloy, thermal diffusion will induce movement of
the diffusing atoms towards either the cooler or the hotter end of the solvent
[35, 33]. The magnitude and direction of the migration depends on a parameter
known as the heat of transport.

The second form of diffusion operating is the standard Fick’s diffusion.
This diffusion is caused by a concentration gradient in the alloy and forces
atoms to move from regions with high diffusing atom concentration towards
regions where the concentration is lower.

Depending on the concentration and temperature gradients, the two types
of diffusion, Soret and Fick, may act in the same or opposite directions. In
the experiments on which this work is based, the Soret effect may be impor-
tant since some observations are difficult to explain if only Fick’s diffusion is
considered. These include
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• Using the same temperature field, the crystal growth rate varies with the
alloy composition,

• Crystals, called rogue crystals, are growing on sites other than the pre-
emplaced initial crystals.

Although generally small [33], the Soret effect seems to play an important role
in the present situation.

In the following report, a simple configuration for crystal growth in an alloy
is presented in Section 2 together with the standard diffusion equation and the
models used for the crystal growth. The diffusion equation is a macroscopic
description of what is happening at a lower level. An interpretation at atomic
level is presented in Section 3. An analytical study is then conducted. The
governing equation is non-dimensionalised and explicit solutions are calculated
for a simplified governing equation in Section 4. Preliminary results are also
presented. Finally, the governing equation is solved numerically in Section 5
and the results are discussed.

2 Typical configuration and governing equations

2.1 Configuration

High pressure and temperature are necessary to allow for crystal growth. In
the present study, pressure and temperature, denoted respectively P and T ,
are typically P = 5 − 6 GPa and T ≈ 1300oC. Figure 1 shows a typical
configuration of the experimental setting. A molten metal alloy of height
L = 2 cm is considered, containing a concentration c0 ≈ 0.24g·cm−3 of diffusing
atoms.

At z = 0, small crystals are assumed to be present from the start of the
process, the early stages of the growth will not be considered here. Crystal
growth may be observed when a temperature difference ∆T = 20K is applied,
with the minimum temperature at the bottom of the alloy and the maximum
temperature at its top. This temperature gradient is key to the process: when
the maximum temperature is at the bottom of the alloy, the crystal growth does
not occur. This phenomenon will now be modelled using standard diffusion
equations.
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Figure 1: Typical configuration.

2.2 Governing equations

In this first approach, the study is one-dimensional: the movements of dif-
fusing atoms are only studied in the vertical direction. The diffusing atom
concentration is constant in each horizontal layer. At the bottom of the alloy,
all crystals are assumed to grow in an identical fashion and they do not affect
each others growth. This clearly simplifies the problem but, obviously, this
model only provides a first approximation of the crystal growth and diffusing
atom movements. The different aspects of diffusion and crystal growth will
now be modelled.

2.2.1 Fick’s diffusion

Fick’s diffusion is a widely studied phenomenon. The governing equation may
be written:

∂c

∂t
+

∂Q

∂z
= 0 , (2.1)
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where c is the concentration of diffusing atoms in the alloy, z is the vertical
Cartesian coordinate and Q denotes the atom flux defined by:

Q = −D
∂c

∂z
, (2.2)

with D the diffusion coefficient. The flux of diffusing atoms is proportional to
the concentration gradient and the minus sign shows that the diffusion occurs
from regions with high concentration of diffusing atoms towards regions with
lower concentration. The diffusion coefficient varies with the following ambient
conditions:

• Pressure.
The diffusion coefficient in (solid) metals varies significantly with pres-
sure at high temperature [11]. The diffusion coefficient in the alloy may
vary if the pressure in not well controlled. This aspect will be neglected
in the present study.

• Gravity.
The effect of gravity on diffusion has been investigated, see for example
[17, 18, 19]. If the value of the gravitational acceleration changes signifi-
cantly, the diffusion coefficient will change, but this effect is negligible for
the set up considered here and so gravity may be considered constant.

The diffusion coefficient in the alloy reflects its composition and is a weight-
ed average of the values of each component. This will however only provide
an order of magnitude:

• These values are not precise. They are apparently calculated at ambient
pressure and would probably be modified at the pressure considered here
for crystal growth.

• The mixture is most certainly not perfect and the weighted average used
to evaluate D may not be appropriate. Similarly, the eutectic nature of
the liquid alloy will modify the outcome as well.

The weighted average calculated with present values will be used in the fol-
lowing. A more precise estimation should be provided by experimental results.
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2.2.2 Soret diffusion

Soret diffusion may be described with the same equation as Fick’s diffu-
sion (2.1), but the diffusing atom flux Q is [35, 33]:

Q = −D
Q∗c

RT 2

∂T

∂z
, (2.3)

whereD is the Fick’s diffusion coefficient, R is the ideal gas constant, T denotes
the temperature and Q∗ represents the heat of transport. The value of the heat
of transport is the crux of the problem. The flux of atoms is proportional to
the diffusing atom concentration and the temperature gradient. The sign of
the heat of transport Q∗ determines the direction of movement of diffusing
atoms:

• if Q∗ > 0, the diffusing atoms move towards the cooler end,

• if Q∗ < 0, the diffusing atoms move towards the hotter end.

The value of Q∗ also determines the balance between the Fick’s and Soret
diffusion. Experimental results show that the Soret effect is dominant in the
process. The value of the heat of transport for molten metals is however
difficult to evaluate. Here again, the operating conditions complicate matters
and make data difficult to find. Values could be found for the solid state
[2, 3] but unfortunately, no values could be found for the liquid metals at the
pressure used here. The sign of this parameter varies with the diffusing atoms
and the metal. The value of the heat of transport will be further discussed in
Section 4.

2.2.3 Crystal growth

Two models are considered for the crystal growth, one independent from the
surrounding diffusing atom concentration, the other taking this parameter into
account.

• Basic model
A number n of crystals are placed at the bottom of the alloy. They remain
spherical at all times, are all exactly similar and their mass increases at
a constant rate, V . The expression for the sink term S may be easily
calculated by performing a mass balance in a slice of alloy of depth ∆z
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and surface Σ0. If the diffusion terms are neglected, the mass balance in
this layer may be written:

m∆z (t+∆t)−m∆z(t) = −n V|∆z ∆t , (2.4)

where V|∆z represents the amount of mass growth between z and z+∆z.
A straightforward analysis on a sphere shows that the surface of crystal
available for z1 ≤ z ≤ z2 is

s = 2πr (z2 − z1) ,

and V|∆z may be expressed as the ratio of the surface available in the
layer of thickness ∆z and the total surface of the sphere:

V|∆z = V 2πr∆z

4πr2
= V∆z

2r
. (2.5)

Since the mass of diffusing atoms in the layer may be written as the prod-
uct of the concentration of atoms and the volume of the layer, equation
(2.4) may be rewritten:

∂c

∂t
Σ0∆z∆t = −nV∆z

2r
∆t ⇐⇒ ∂c

∂t
= −nS

V
2r

, (2.6)

where nS = n/Σ0 denotes the number of crystals per surface unit. The
sink term S may then be defined as

S = −nS
V
2r

. (2.7)

The equation governing the radius, r, of the crystal may then be written:

dr

dt
=

V
4πρr2

. (2.8)

• Advanced model
The crystal mass growth rate depends on the concentration of atoms
available around the crystal. The parameter V is not constant over the
entire sphere surface and may be written as

V = V0
c

c0
= V1c , (2.9)
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where V0 is constant. The sink term becomes

S = −nS
V0

2r

c

c0
= −nSV1c

2r
, (2.10)

and the constant V1 is chosen to fit an initial condition. The radial
growth rate is only affected through the value of V: since the value is
not constant in space, the global value should be estimated using the
integral:

V =

∫ 2r

0

V|dz dz , (2.11)

where V|dz is the local value of V per distance unit.

2.2.4 Complete equation

The equation governing diffusing atom migration and the crystal growth area
may be summarised as:

∂c

∂t
− ∂

∂z

(
D
∂c

∂z
+

DQ∗c

RT 2

∂T

∂z

)
= 0 , (2.12)

and at the bottom of the alloy, depending on the model considered for crystal
growth, this equation becomes:

∂c

∂t
− ∂

∂z

(
D
∂c

∂z
+

DQ∗c

RT 2

∂T

∂z

)
= −nS

V
2r

, (2.13)

∂c

∂t
− ∂

∂z

(
D
∂c

∂z
+

DQ∗c

RT 2

∂T

∂z

)
= −nS

V1c

2r
. (2.14)

The flux of diffusing atoms in the mixture is defined as:

Q = −D

(
∂c

∂z
+

Q∗c

RT 2

∂T

∂z

)
. (2.15)

The governing equation is coupled with the initial condition

c(t = 0, z) = c0 ,

and two zero-flux boundary conditions at the top and bottom of the alloy:[
−D

(
∂c

∂z
+

Q∗c

RT 2

∂T

∂z

)]
z=0

=

[
−D

(
∂c

∂z
+

Q∗c

RT 2

∂T

∂z

)]
z=L

= 0 .

The flux will now be interpreted at microscopic level and then the governing
equations (2.12-2.14) will be solved numerically and analytically.
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3 Diffusion and thermomigration at atomic

level

The two terms of the diffusion equation derived in Section 2 will now be studied
at atomic level. A traditional model for Fick’s law is detailed in Section 3.1
and the Soret effect is presented in Section 3.2.

3.1 Fick’s law

Fick’s diffusion of atoms in the metal alloy may be interpreted using Brownian
motion. The diffusing atom movement is governed by the Langevin equation
[32]:

m
du

dt
= −ζu+ F ,

where m is the mass of the atom, u is its velocity, ζ is the the drag coefficient
slowing the particle down and F is the Brownian force, oscillating rapidly
because of the collisions and interactions between the diffusing and the alloy
atoms. The solution of this equation is averaged for a high number of particles
and this leads to the Fick diffusion law as described in the previous section [32].
In practice, particles are equally likely to go in any direction because of the
oscillating Brownian force. Consequently a region with a high concentration
of diffusing atoms next to a region with a lower concentration will lose more
atoms to the neighbouring region than it can gain from it and the concentration
of diffusing atoms becomes uniform in the entire alloy.

3.2 Soret diffusion

Interpreting the Soret effect at atomic level is a rather difficult task. The
thermodiffusion effects are mainly controlled by six aspects of the diffusing
atoms and the surrounding alloy [1]:

• Mass of the particles,

• Diameter of the particles,

• Moment of inertia of the particles,

• Interaction between the particles and the solvent,
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• Ionic structure of the particles,

• Interaction between particles.

The first three aspects are directly related to the physical properties of the par-
ticles, the last three are chemical properties. These effects are rarely additive,
making the effective behaviour of diffusing atoms difficult to work out.

The heat of transport in solids may be interpreted using the movement of
electrons due to the temperature gradient. They lose energy and momentum
to the diffusing atoms and this affects the Brownian movement of diffusing
atoms. In metals, energy is mainly transported by electrons and the sign of
the heat of transport should be similar to the sign of electron movements.
However, this is far from always the case since the movement of electrons may
be screened by other properties of the alloy atoms [27].

The process is more complex in liquids due to interactions likely to affect
the diffusing atom movements and the sign of the heat of transport is difficult
to predict [1].

4 Analytical solutions

In this section, analytical aspects will be investigated. First, the governing
equations (2.12-2.14) introduced in Section 2 are non-dimensionalised and the
resulting non-dimensional constants are analysed. A steady state solution is
approximated for the relevant boundary conditions.

4.1 Non-dimensional equation

The governing equation in dimensional form is:

∂c

∂t
=

∂

∂z

[
D

(
∂c

∂z
+

Q∗c

RT 2

∂T

∂z

)]
− nS

V
2r

c

c0
. (4.1)

The variables can be non-dimensionalised in the following manner:

c = c0c̄ , t = τ t̄ , z = Lz̄ , r = r0r̄ , T = T0 +∆T T̄ , (4.2)

where c0 is the initial uniform concentration, τ denotes the time scale, L is the
thickness of the alloy considered, r0 is the initial radius of the crystals and T0



Effect of thermal gradients on the random diffusion of a light solute in a heavier solvent31

and ∆T represent the temperature at z = 0 and the typical temperature dif-
ference in the alloy respectively. After dropping the bars, the non-dimensional
equation may be written

∂c

∂t
=

∂

∂z

[
A
∂c

∂z
+

Bc

(1 + [∆T/T0]T )2
∂T

∂z

]
− C

c

r
, (4.3)

where the three non-dimensional numbers A, B and C are defined by

A =
τD

L2
, B =

τDQ∗∆T

RT 2
0L

2
, C =

nSVτ
2c0r0

. (4.4)

The boundary conditions in non-dimensional form become

A
∂c

∂z
+

Bc

(1 + ∆TT/T0)2
∂T

∂z

∣∣∣∣
z=0, z=1

= 0 , (4.5)

and the initial condition is

c(t = 0, z) = 1 .

The non-dimensional numbers A and B describe the relative importance
of the classical diffusion and the Soret effect. Experimental results show that
the Soret effect plays a key role so the two parameters A and B should at least
have the same order of magnitude. This provides a first estimate for the value
of the heat of transfer:

A

B
≈ 1 =⇒ Q∗ ≈ RT 2

0

∆T
≈ 103kJ ·mol−1 .

This value is considerably higher than the values observed in the solid state.
The temperature gradient could explain this rather high value: it may be more
localised at the bottom of the alloy where crystal growth occurs.

Crystal growth is going to be the dominant phenomenon in the process and
the time scale is chosen accordingly:

τ =
2c0r0
nSV

,

and the governing equation becomes:

∂c

∂t
=

∂

∂z

[
A
∂c

∂z
+

Bc

(1 + [∆T/T0]T )2
∂T

∂z

]
− c

r
. (4.6)

An approximate analytical solution will now be calculated for this non-dimensional
equation.
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4.2 Steady state solution with no crystal growth

A steady state solution of Equation (4.6) is now considered. This solution
describes what happens after a long time, when the phenomenon modelled
in the equation has reached equilibrium and no crystals are growing. The
governing equation is simplified using the following assumptions:

• The temperature gradient is constant across the alloy, ∂T/∂z = 1.

• The temperature difference ∆T is small compared to the minimum tem-
perature T0, so |∆T/T0| T ≪ 1.

The governing equation (4.6) may then be written:

∂

∂z

[
A
∂c

∂z
+Bc

]
= 0. (4.7)

Equation (4.7) has the family of solutions

c = k1e
−Bz/A + k2 , (4.8)

where k1 and k2 are two constants. The boundary conditions (4.5) impose
k2 = 0. Mass conservation in the system∫ z=1

z=0

cdz = 1

leads to

k1 =
B

A

1

(1− e−B/A)
.

The concentration of diffusing atoms in the alloy at equilibrium is then:

c =
B

A

e−Bz/A

(1− e−B/A)
. (4.9)

The solution depends upon the position z and the ratio B/A:

B

A
=

Q∗∆T

RT 2
0

.

Since ∆T is positive, the sign of B is the same as that of Q∗. This sign
determines the direction in which the diffusing atoms migrate:
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• If the heat of transfer Q∗ is positive, the Soret effect pushes diffusing
atoms towards the cooler end of the alloy, at the bottom of the sample:

c(0) =
B

A

1

(1− e−B/A)
.

• If the heat of transfer is negative, diffusing atoms move towards the
hotter end of the sample at the top.

c(0) =
B

A

e−B/A

(1− e−B/A)
. (4.10)
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Figure 2: Typical configuration.

Figure 2 shows the steady state equilibrium concentration for various values
of the ratio B/A, this means for different values of the heat of transfer, Q∗. In
all cases, the non-dimensional temperature gradient is 1 andQ∗ is positive. The
initial constant atom concentration corresponds to the vertical curve. When
the heat of transfer is much smaller than Q∗ = 106kJ·mol−1, the Soret diffusion
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only has a small effect. When the value of the heat of transport gets closer
to Q∗ = 106kJ·mol−1, the effects of thermomigration become more obvious
as could be expected from the analysis on non-dimensional coefficients. In
all cases, as could be expected, the concentration of diffusing atoms is much
higher at the cooler end of the alloy, z = 0.

A time dependent solution of the governing equation (4.6) can be calculated
explicitly and this is performed in Appendix A. However, these analytical
results may not include the sink term easily and numerical solutions will now
be investigated.

5 Numerical solutions

5.1 Numerical scheme

Explicit solutions may not be calculated for the complete system. When crys-
tals are growing, little progress may be done analytically. The governing e-
quation will be solved numerically using a standard finite difference method.
The concentration c is calculated on equally spaced points numbered from 0
to nz, including the boundaries, separated by the space step ∆z. Similarly,
the simulation time ts is divided in nt time steps of size ∆t = ts/nt. The
concentration at z = i∆z and at time t = k∆t is denoted by cki .

To be consistent with the study performed in the previous section, a non-
dimensional form of the equation is used. When a sink term is introduced, the
governing equation may then be written:

∂c

∂t
=

∂

∂z

(
A
∂c

∂z
+Bc

∂T

∂z

)
− S , (5.1)

where S is the non-dimensional sink term. The equation is solved under the
following conditions:

• A constant temperature gradient is applied with the maximum temper-
ature at the top:

∂T

∂z
= 1 , (5.2)
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• The boundary condition (4.5) is applied at the top and bottom of the
alloy: (

A
∂c

∂z
+

Bc

(1 + [∆T/T0]T )2

)∣∣∣∣
z=0, z=1

= 0 .

This formulation is consistent with the mass conservation assumption
used in the previous section.

• Initially, the atom concentration is uniform in the alloy:

c(0, z) = 1 . (5.3)

The use of the standard finite volume method leads to the following differ-
ence equations:

ck+1
0

[
1 +

2A∆t

∆z2
−

Γ1/2∆t

∆z

]
−ck+1

1

[
Γ1/2∆t

∆z
+

2A∆t

∆z2

]
= ck0 − S0∆t , (5.4)

ck+1
i−1

[
Γi−1/2∆t

2∆z
− A∆t

∆z2

]
+ ck+1

i

[
1 +

2A∆t

∆z2
+

(
Γi−1/2 − Γi+1/2

)
∆t

2∆z

]

−ck+1
i+1

[
Γi+1/2∆t

2∆z
+

A∆t

∆z2

]
= cki − Si∆t , (5.5)

ck+1
nz−1

[
Γnz−1/2∆t

∆z
− 2A∆t

∆z2

]
+ ck+1

nz

[
1 +

2A∆t

∆z2
+

Γnz−1/2∆t

∆z

]
= cknz

− Si∆t (5.6)

and the term Γi+1/2 is defined as

Γi+1/2 =
B

[1 + ∆T/T0(i+ 1/2)/nz]
2 .

The sink term is now expressed for the two models considered:

• Basic model:

Si =
1

ri
if z ≤ 2r and Si = 0 otherwise. (5.7)
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The equation governing the radius, r, of the crystal may be written using
non-dimensional parameters

dr

dt
=

τ

r30

V
4πρr2

, (5.8)

and the discretised form is:

rk+1 = rk +∆t
τ

r30

V
4πρ(rk)2

. (5.9)

• Advanced model:
The discretised form is:

Si =
nSV1c

k
i

2rk
if z ≤ 2r and Si = 0 otherwise, (5.10)

and the radius growth rate is only affected through the value of V : since
the value is not constant in space, the global value should be estimated
using the integral:

V =

∫ 2r

0

V|dz dz . (5.11)

The discretisation is now complete. The nz + 1 discretised equations form
a tri-diagonal system, that may be solved easily, using an LU factorisation
algorithm for example. The numerical scheme is now complete, results will
now be presented.

5.2 Numerical results

The solutions of the governing equation will be presented for three different
configurations. Crystal growth is considered for the two models detailed above,
first when the crystal mass increases at a constant rate, then when the growth
rate varies with the atom concentration. The simulations are carried out with
the values detailed in Table 1.

The value of the heat of transport is chosen to fit experimental observa-
tions: when the temperature gradient is positive, diffusing atoms should move
towards the cooler end, when the temperature gradient is negative the atoms
move towards the hotter end. The value retained here is Q∗ = 107J·mol−1. To
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Symbol Description Value Unit
A Non-dimensional number
B Non-dimensional number
C Non-dimensional number
c Concentration of diffusing atoms kg·m−3

c0 Diffusing atoms initial concentration 240 kg·m−3

D Diffusivity of diffusing atoms in alloy 4 · 10−9 m2·s−1

g Gravity 9.8 m·s−2

L Length scale 0.02 m
nS Number of crystals/surface unit 10000 m−2

Q∗ Heat of transport in alloy J·mol−1

R Ideal gas constant 8.314 J·K−1·mol−1

r Crystal radius m
r0 Initial crystal radius 10−4 m
T0 Minimum temperature 1573 K
t Time
z Vertical Cartesian coordinate
V Initial crystal growth rate 2 · 10−9 kg·s−1

∆t Non-dimensional time step
∆T Typical temperature gap 20 K
∆z Non-dimensional space
τ Time scale 2400 s

Table 1: Nomencalture

start with, the crystal growth is not concentration dependent. With the values
given in Table 1, the time scale is 40 minutes and the radius scale 10−4m. Fig-
ure 3 shows the evolution of the crystal diameter during one day for a positive
and negative temperature gradient. With the value retained for the heat of
transport, the temperature gradient plays the key role observed experimentally.
The two growth rates are similar until t = 6, this corresponds to 4 hours. The
two curves then differ drastically: when the temperature gradient is negative,
the crystal growth stops suddenly, when the temperature gradient is positive,
the growth continues at a rather steady rate. This may be explained when
considering the diffusing atom concentrations shown in Figure 4. When the
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temperature gradient is negative, there are no more diffusing atoms at the
bottom of the alloy, and therefore the crystal growth is stopped. When the
temperature gradient is positive, the concentration of diffusing atoms is very
high at the bottom of the alloy and there is no shortage of raw material to fuel
the crystal growth.

The results are very similar when crystal growth is concentration depen-
dent. Figure 5 compares the growth rates for concentration and non-concentra-
tion dependent growth models for a positive temperature gradient. As could
be expected, the radius grows faster when the growth rate model is concen-
tration dependent. This is consistent with the evolution of the concentrations:
diffusing atoms are piling up at the bottom of the alloy and this accelerates
the crystal growth.
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Figure 3: Crystal radius evolution with different temperature gradients.
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Figure 4: Diffusing atom concentrations after one day.
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Figure 5: Crystal radius evolution with different growth models.
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5.3 Discussion

The evolution of the radius reflects the behaviour observed experimentally: the
growth rate is strongly affected by the temperature gradient and the crystals
do not grow after some time when the temperature gradient is the wrong way
round. However, several aspects of the model remain unsatisfactory.

• Heat of transport
The value of the heat of transport required to simulate adequate crystal
growth is extremely high, three to four orders of magnitude larger than
heat of transport values measured in solids [3]. Several factors could
explain these differences:

– The alloy used in the present work is liquid, so it is at a much
higher temperature and subject to a very much higher pressure,
which could make atom movements much more difficult.

– The alloy is an eutectic state and this might also make atom move-
ments more difficult.

This high value may also be affected by the thermal model used in the
present work as will now be detailed.

• Temperature
A constant temperature gradient was applied to the alloy throughout
the study. However, the crystal formation is endothermic, which means
that a much higher temperature gradient could be expected close to
the crystal. A thorough study of the temperature should therefore be
performed and this new configuration could reduce the value of the heat
of transport.

• Concentration
The concentration profiles shown in Figure 4 are not realistic. The dif-
fusing atom concentration in the alloy may not take the complete range
of values observed in the results, this is limited by a saturation concen-
tration. This was not considered here and clearly, this would affect the
crystal growth. The movements of diffusing atoms would be limited and
the growth rate would be reduced.
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6 Conclusion and future work

An equation modelling the diffusion of diffusing atoms in a molten metal alloy
was presented. The model is based on the standard Fick’s diffusion process
and the temperature dependent Soret thermodiffusion. These two phenomena
are coupled with crystal growth models. The preliminary results are consistent
with experimental observations. However, there are limitations to the present
approach and the model could be developed in quite a few directions

• The equation presented does not account for saturation. This value
increases with temperature: when saturation concentration is reached
throughout the sample, this may create a diffusing atom flux with an
order of magnitude similar to the flux simulated with the Soret effect.
This element should be included to allow for a more realistic model.

• The value of the heat transport required in the present study is very high.
This could be explained by the extreme experimental conditions. Such
values might however not be possible and this problem may be solved for
more realistic experimental conditions and when saturation is included
in the model.

• A number of constants are undetermined due to the extreme operat-
ing conditions. Quantitative experimental results would be necessary to
simulate the evolution more accurately.

• A more systematic temperature study inside the alloy should be per-
formed. This would not affect the qualitative results but the speed of
the crystal growth would be affected. This could also reduce the high
value of the heat of transport necessary to reproduce qualitative experi-
mental results.

• Two basic models describing the growth rate were presented. In the first
case, the crystals gain mass at a constant rate, in the second, the gain
is proportional to the surrounding diffusing atom concentration. These
are empirical assumptions and a more advanced model would certainly
be beneficial.

• This preliminary model was developed for a one dimensional geometry.
Obviously, a two or three dimensional model would provide much more
valuable (and potentially more accurate) results.
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A Time dependent solution of equation 4.6

A slightly simplified version of equation (4.6) with no sink term may be ful-
ly solved analytically. Once more, if the temperature gradient is constant
throughout the alloy and if the temperature difference between the top and
the bottom of the alloy is small, the governing equation may be written

∂c

∂t
=

∂

∂z

[
A
∂c

∂z
+Bc

]
. (A.1)

The solution may be calculated as c(t, z) = Y (t)Z(z). A straightforward
analysis shows that the concentration c may be written as

c(t, z) =
∞∑
n=0

anYn(t)Zn(z) ,

where

Yn(t) = exp

[
−
(
An2π2 +

B2

4A

)
t

]
,

Zn(z) = exp

(
−Bz

2A

)[
cos(nπz)− B

2nπA
sin(nπz)

]
,

and the coefficients an are defined using the concentration c0(z) at t = 0:
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an = 2

∫ 1

0

c0(z) exp

(
Bz

2A

)
cos(nπz)dz

= 2

∫ 1

0

−Bc0(z)

2nπA
exp

(
Bz

2A

)
sin(nπz)dz .

If the initial concentration is constant throughout the alloy, c0(z) = 1, this
leads to

an =
B

A

[
exp (B/2A) cos(nπ)− 1

B2/(4A2) + (nπ)2

]
. (A.2)
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